
Comenius University, Bratislava

Faculty of Mathematics, Physics and Informatics

Educational tools for first order logic
Bachelor thesis

2018 Alexandra Nyitraiová

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Educational tools for first order logic
Bachelor thesis

Study programme: Applied Computer Science
Study field: Applied Informatics
Department: Department of Applied Informatics
Supervisor: RNDr. Jozef Šiška, PhD.
Consultant: Mgr. Ján Kľuka, PhD.

Bratislava 2018 Alexandra Nyitraiová

41026145

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Alexandra Nyitraiová
Study programme: Applied Computer Science (Single degree study, bachelor I.

deg., full time form)
Field of Study: Applied Informatics
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Educational tools for first order logic

Annotation: Training and exercises are an important part of education process, especially
when learning formalisms and constructs from logic such as formal proofs or
semantics. For such exercises to be effective, the students need active feedback
on what they are doing right or wrong. Interactive applications can make such
feedback available even in the absence of teachers and thus allow students to
work on the exercises according to their own time schedule.

Aim: The goal of this thesis is to create or extend tools that allow students to practice
some of the tasks from logic courses: proofs, semantic tableaux or resolution.
These shall be in the form of interactive, client-side web based applications.

Keywords: logic tools, first-order logic, client-side web application

Supervisor: RNDr. Jozef Šiška, PhD.
Consultant: Mgr. Ján Kľuka, PhD.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

prof. Ing. Igor Farkaš, Dr.

Assigned: 15.10.2017

Approved: 16.10.2017 doc. RNDr. Damas Gruska, PhD.
Guarantor of Study Programme

Student Supervisor

41026145

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Alexandra Nyitraiová
Študijný program: aplikovaná informatika (Jednoodborové štúdium, bakalársky

I. st., denná forma)
Študijný odbor: aplikovaná informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Educational tools for first order logic
Výučbové nástroje pre prvorádovú logiku

Anotácia: Trénovanie a precvičovanie úloh tvoria dôležitú súčasť procesu výuky, hlavne
v prípade formalizmov a konštrukcií z matematickej logiky. Aby takéto
precvičovanie bolo efektívne, študenti musia mať dostatočnú spätnú väzbu
o tom, čo spravili dobre a čo zle. Interaktívne aplikácie môžu sprístupniť takúto
spätnú väzbu aj bez učiteľov, čo umožňuje študentom pracovať na úlohách
podľa ich časových možností.

Cieľ: Cieľom práce je vytvoriť alebo rošíriť nástroje, ktoré umožňujú študentom
trénovať si niektoré úlohy z predmetov venujúcim sa logike: dôkazy, sémantické
tablá alebo rezolvencia. Nástroje budú vo forme interaktívnych webových
aplikácií na strane klienta.

Kľúčové
slová: nástroje pre logiku, logika prvého rádu, webová aplikácia na strane klienta

Vedúci: RNDr. Jozef Šiška, PhD.
Konzultant: Mgr. Ján Kľuka, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 15.10.2017

Dátum schválenia: 16.10.2017 doc. RNDr. Damas Gruska, PhD.
garant študijného programu

študent vedúci práce

iii

Acknowledgement: I would like to thank to my supervisor Jozef Šiška for his
help and time he spend explaining me the curriculum. I found it very useful. I would
like to thank to my other supervisor Ján Kľuka for spending his time with me and my
work whenever I needed it. Thank you both very much for your patience, kindness
and sharing your knowledge. I would like to thank to the students who tested our new
tool. Thanks goes also to my boyfriend Zoltán Onódy for his support and patience.

iv

Abstrakt

V tejto práci bolo našou snahou pomôcť študentom predmetu Matematika (4) - Logika
pre informatikov naučiť sa ako funguje dôkaz analytickým tablom. Na základe práce
našich školiteľov sme vytvorili nástroj, ktorý sa používa na vytvorenie dôkazu podľa
metódy analytického tabla. Náš editor nevytvára dôkaz automaticky, ale validuje uží-
vateľov dôkaz po každej akcii. Editor zdôrazňuje chyby a každú chybu vypíše pri prís-
lušnej nevalidnej formule. Týmto nadobúda edukačný charakter. Náš editor podporuje
dokazovanie v prvorádovej logike ale aj vo výrokovej logike. Dôkaz je vizualizovaný ako
strom a každý vrchol je reprezentovaný nejakou formulou. Formula môže byť buď pred-
poklad o ktorom vieme, že platí alebo môže byť odvodená jedným zo štyroch pravidiel
z nejakej formuly vyššie v strome. Formuly odvodzujeme aplikovaním nasledujúcich
štyroch pravidiel: alfa, beta, gama a delta.

Náš editor sme naprogramovali ako webovú aplikáciu vo funkcionálnom programova-
com jazyku Elm. Niektorí zo študentov predmetu Mathematika (4) nám ohodnotili náš
editor. Podľa nich je náš nástroj vhodný pre naučenie sa dokazovania podľa metódy
analytického tabla. Mnohí z nich by použili náš editor na vypracovanie domáceho zada-
nia. Dali nám užitočnú spätnú väzbu, ktorá nám pomohla zlepšiť užívateľské rozhranie
nášho editora. Predpokladáme, že v budúcnosti sa bude do nášho editora prispievať.
Hoci sme dosiahli náš cieľ, na editore je stále čo zlepšovať. Napríklad implementovať
prvorádovú logiku s rovnosťou.

Kľúčové slová: formula, tablový editor, prvorádová logika, výroková logika,
webová aplikácia, alfa pravidlo, beta pravidlo, gama pravidlo, delta pravidlo,
dôkaz analytickým tablom, funkcionálne programovanie, Elm

v

Abstract

In our work we wanted to help students ofMathematics (4) class to learn how analytical
tableau proof works. We built a tool based on the editor of Jozef Šiška and Ján Kľuka
which is used to create proofs according to the analytical tableau method. The editor
does not create proofs automatically, but it validates the user’s proof after every user
action. It highlights mistakes and displays them near every formula. Thus it gains
an educational character. Our tool supports proving in first-order logic as well as in
propositional logic. The proof is visualized as a tree. A node is represented by a
formula. A formula can be either a premise or derived from a predecessor located
somewhere above it. The formula can be derived from a predecessor by applying one
of the four rules: alpha, beta, gamma and delta.

We built the tool as a web application in functional programming language Elm.
Some of the students of the Mathematics (4) class evaluated our tool. They found
our tool useful and would use it to learn how the analytical tableau proof works or to
complete a homework assignment. They gave us useful feedback which helped us to
improve the user interface. We expect future contributions in our tool. Although we
reached our goal, there are still some improvements which would make our tool more
useful, such as implementing first-order logic with equality.

Keywords: formula, tableau editor, first-order logic, propositional logic,
web application, alpha rule, beta rule, gamma rule, delta rule, analytical
tableau proof, functional programming, Elm

Contents

Introduction 1

1 Background 3
1.1 Propositional logic . 3

1.1.1 Analytic tableau in propositional logic and related definitions . 4
1.2 First-order logic . 6
1.3 Similar work . 12

1.3.1 Tableau Editor . 12
1.3.2 Ruzsa . 12
1.3.3 Logitext . 12
1.3.4 Clausal Language . 12
1.3.5 Other tools for teaching first-order logic 13

1.4 Technologies . 13
1.4.1 Elm . 13
1.4.2 Yarn . 15

2 Problem specification 16

3 Design 18
3.1 Application logic . 18

3.1.1 Proof structure . 18
3.1.2 New zipper structure . 19
3.1.3 Parsing and validating first-order formulas 20
3.1.4 Validation . 20
3.1.5 Gamma rule validation in first-order formulas 20
3.1.6 Delta rule validation in first-order formulas 21
3.1.7 Substitution . 22
3.1.8 Undo, Redo . 22

3.2 User interface improvements . 22
3.2.1 Render the tableau using html div elements 23
3.2.2 Add a node anywhere in the tree 23

vi

CONTENTS vii

3.2.3 Deleting arbitrary nodes . 23
3.2.4 Delete the sub-tree of a node 23
3.2.5 Swapping beta sub-trees . 24
3.2.6 Change of formula type . 24

4 Implementation 25
4.1 New proof structure . 25

4.1.1 Zipper reimplementation . 25
4.2 Unit tests . 27
4.3 Substitution . 27
4.4 User interface . 27
4.5 Validation of Gamma and Delta rules 28
4.6 Undo, Redo . 28
4.7 Adding and deleting a specific node . 28

5 Evaluation 31
5.1 The goal of testing . 31
5.2 Task assignments . 31
5.3 Questionnaire . 32
5.4 Results of testing . 32

5.4.1 Summary . 33

Conclusion 35

Appendix A: Source code 36

Introduction

The goal of this thesis is to create a web application, which enables students of math-
ematical logic to create an analytical tableau and thus ease solving their homework.

Proof editors are suitable for teaching mathematical proofs. An appropriate imple-
mentation of a proof editor for a given method makes it easier for a student to study
that method. An editor can make it easier for a teacher as well. For example, when
correcting homework or while giving a lecture.

Mathematical logic, the science whose primary concern is deduction, is included in
the curriculum of our computer science study. For the future work of students of this
discipline, it is essential to know how to use deductive methods and thus derive and
prove possible conclusions from a given theory.

Tableau calculus is one of the methods of writing a formal proof in propositional
and first-order logic. The analytical tableau has a tree structure whose nodes represent
signed formulas. By constructing such a tree, we can prove or disprove a formula or
the feasibility of a theory.
There are other formal methods of proving in mathematical logic. It is worth mention-
ing, in particular, the Hilbert calculus[6] and the Sequent calculus. Sequent calculus
has similar advantages as the Tableau calculus. It also constructs a tree according to
some rules.

The method of analytical tableau differs from the Hilbert calculus in the way of
formating the proof. The method of analytical tableau forms a proof in the form of a
tree. The Hilbert calculus forms the proof as a sequence of formulas.
The relationship between Hilbert calculus and the natural deduction system is like the
relationship between the low-level programming language and the high-level program-
ming language. This means that it is often an inappropriate method of proving because
of its cumbersome nature.
When using Hilbert calculus, we need to prove at least some metatheorems before we
can use such a system without too much overhead.
The advantage of the analytical tableau method is that it is analytical. That is, we
know exactly which rule we have to use and how. This method is therefore intuitive
and straightforward and is rarely mistaken. Unfortunately, this does not apply when
creating a tableau in first-order logic. Visualizing the tree structure at the same time

1

CONTENTS 2

simplifies finding conclusions after designing the tree.
Inattention causes the most common mistakes when constructing a tableau. A

student misapplies a rule or copies a variable or a term incorrectly.
Other mistakes occur in situations where the tableau tree structure is really large, and
thus the tableau is unclear. The investigator may not notice the formulas to which the
rules were not applied or are misapplied.

A specific requirement for our application is that it allows the student to create
an incorrect tableau while also highlighting mistakes. Our application thus acquires
an educational character and gives students the opportunity to learn from their own
mistakes.
The application also evaluates whether something may be resulting, is resulting or is
not resulting from a tableau.

Chapter 1 describes the theory needed to create a tableau. We define basic concepts
such as formula, signed formula, truth-functionally satisfiable formulas, the theory of
satisfiability, analytical tableau, open and closed branches of a tableau and alpha, beta,
gamma, and delta rules. We mention similar tools and how they differ from ours. We
explain the technologies we build our application in.
In Chapter 2, we set the exact requirements for our final application, and present
the design of the application in Chapter 3. Chapter 4 explains how was the editor
implemented and how it can be used. In Chapter 5 we give an evaluation to our work
and mention what has been done according to the design and what differs from the
design and why.

Chapter 1

Background

Formally was the Tableau calculus defined, described, and explained for the first time
by Raymond M. Smullyan in his book First-Order Logic [14]. He defined the basic
terminology and definitions we will be using in our work. We give a formal description
of analytical tableau based on R.M. Smullyan’s work [14].
In this chapter we explain mathematical background of analytical tableau in proposi-
tional and first-order logic for better understanding.

1.1 Propositional logic

Definition 1 (Symbols of propositional logic[14]). Symbols of propositional logic are
propositional variables from a denumerable set V = {p1, p2, . . . , pn}, which does not
contain symbols ¬, ∧, ∨, →, (and). Even its elements do not include these symbols.
Other symbols of propositional logic are the two symbols (and) (left parenthesis and
right parenthesis). They are used for purposes of punctuation. [14] Symbol ¬ is unary
connective (has one argument). Symbols ∧,∨ → are binary connectives (have two
arguments).

Definition 2 (Formula [14]). Every propositional variable is a formula. If A is for-
mula, so is ¬ A. If A, B are formulas, so are (A∧B), (A∨B), (A→B) - conjunction,
disjunction, implication of formulas A and B.

Definition 3 (A satisfiable formula in an evaluation [14]). Let V be the denumerable
set of propositional variables. Let v be an evaluation of the set V . Then for every
propositional variable p from V and every formula A, B above we say that:

• v satisfies atomic formula p if and only if (p) = t,

• v satisfies formula ¬A if and only if v does not satisfy A,

• v satisfies formula (A ∧B) if and only if v satisfies A and v satisfies B,

3

CHAPTER 1. BACKGROUND 4

• v satisfies formula (A ∨B) if and only if v satisfies A or v satisfies B,

• v satisfies formula (A→ B) if and only if v does not satisfy A or v satisfies B.

Definition 4 ((Non)Satisfiability, tautology, falsifiability of formulas in propositional
logic[14]). Formula X is satisfiable if and only if it is satisfied with at least one eval-
uation of the propositional variables. Formula X is called non-satisfiable if it is not
satisfiable. Formula X is called falsifiable if and only if it is not satisfied in at least one
evaluation of the propositional variables. Formula X is called tautology if and only if
it is satisfied at each evaluation of the propositional variables.

Definition 5 (Theory in propositional logic[14]). We call each set of formulas a theory
in propositional logic. Whether a theory T is satisfied or not, depends only on the
evaluation of the propositional variables that are in the formulas of the theory T.

Definition 6 (Definition of theory satisfiability in propositional logic [14]). Let T be
the theory in propositional logic. Evaluation satisfies theory T (v |= T) if and only if v
satisfies every formula X from the set T. We call the satisfying evaluation a model of
theory T.

Definition 7 (Signed formulas [14]). Let X be the formula of the propositional logic.
Sequence consisting of symbols TX and FX is called signed formula. [10] Let v be the
evaluation of propositional variables and X is the formula. Then

• v satisfies TX if and only if v satisfies X.

• v satisfies FX if and only if v does not satisfy X.

1.1.1 Analytic tableau in propositional logic and related defi-

nitions

Definition 8 (Alpha and Beta rules[14]). According to the definition of satisfying a
formula we have formulated α and β rules as follows.

CHAPTER 1. BACKGROUND 5

α

α1

α2

β

β1 β2

T(X ∧ Y)

TX

TY

F(X ∧ Y)

FX FY

T¬X
FX

F(X ∨ Y)

FX

FY

T(X ∨ Y)

TX TY

F¬X
TX

F(X → Y)

TX

FY

T(X → Y)

FX TY

In propositional logic, we have two types of rules. Alpha rule and Beta rule. If
there is an conjunction signed with T this indicates, we have to use the alpha rule as
described above to simplify the original formula and detach the sub-formulas. If there
is a disjunction signed with T this means, this disjunction can be satisfied if at least
one of the sub-formulas is true. Therefore we apply the Beta rule as demonstrated
above to detach the sub-formulas.

Definition 9 (Analytic tableau [14]). An analytic tableau for formula X is an ordered
binary tree, whose nodes are represented by formulas. Such thee is constructed as
follows. We start by placing X at the root. Now suppose T is a tableau for X which
has already been constructed; let Y be a leaf. Then we may extend T by either of the
following two operations.

(A) If some α occurs on the path Py then we may adjoin either α1 or α2 as the sole
successor of Y.

(B) If some β occurs on the path Py then we may simultaneously adjoin β1 as the left
successor of Y and β2 as the right successor of Y.[14]

Note: Successor, of the node X, is such node Y , which is located in the tree some-
where below X. Direct successor of the node X is such node Y, which is located directly
under X. Depth of Y is exactly one greater than X’s.

Definition 10 (Open and closed branches in a tableau [14]). A branch of the tableau
T is a path from the root of T to some of its leafs. Signed formula X+ is on the branch
π in T if and only if it is in some of the nodes on π.

Branch π of tableau T is closed if and only if it contains signed formulas FY and
TY for some formula Y . Otherwise is π open. Tableau T is closed if and only if its

CHAPTER 1. BACKGROUND 6

every branch is closed. On the contrary, tableau T is open if and only if at least one of
its branches is open.

Example 1 (Example of tableau in propositional logic). The following example demon-
strates the proof using method of analytical tableau in propositional logic. We prove by
contradiction that the formula (p→ (q → (p ∧ q))) is a tautology.
Let’s suppose the given formula is not a tautology therefore we sign it with F sign. Now
we need to apply alpha or beta rules until no rule can be applied. Formulas in a branch
are satisfied simultaneously.

(1) F(p→ (q → (p ∧ q)))
(2) Tp from (1)
(3) F(q → (p ∧ q)) from (1)
(4) Tq from (3)
(5) F(p ∧ q) from (3)
(6) Fp z (5) (7) Fq z (5)

∗ between (2) and (6) ∗ between (4) and (7)

By applying alpha and beta rules we get a conflict in every branch. If X is a formula
then by conflict we mean there are TX and FX in the same branch. They can not be
satisfied simultaneously. If there is a conflict in every branch we got a conflict with the
assumption and thus the given formula is a tautology.

1.2 First-order logic

Definition 11 (Symbols of first-order logic [14]). For first-order logic we shall use the
following symbols:

• symbols of (individual) variables from some infinite countable set VL (we denote
them as x, y)

• non-logical symbols:

– symbols of constants from a denumerable set CL (a,b,...)

– functional symbols from a denumerable set FL (f,g,...)

– predicate symbols from a denumerable set PL (p,r,...)

• logical symbols:

– logical connectives: ¬, ∧, ∨, →

– quantifiers: ∀ a ∃ (universal a existential quantifiers)

CHAPTER 1. BACKGROUND 7

• punctuation symbols: (,) and , (left and right parenthesis and comma)

Sets CL, FL, PL are disjoint. Non-logical symbols do not contain logical and punctuation
symbols. Every symbol such that S ∈ PL ∪ FL is assigned an arity (argument count)
ar(S) ∈ N+

Example 2. Symbols of constants represent concrete objects or values, just like own
names in the natural language or constants in a programming language: Saska, Zoli,
Train24, 9, 0. Predicate symbols represent features and relationships: loves2, <2,
buys3. Functional symbols represent relationships between uniquely designated objects:
price1, valuation2, +2.

Definition 12 (Term and set of terms [14]). We define the set TL of terms in the
language of the logic L as the smallest set of sequences of language L’s symbols.
Each symbol of variable x ∈ VL is a term.
Each symbol of constant c ∈ CL is a term.
If f is a functional symbol with arity n and t1, ..., tn are terms, then also f(t1, ..., tn) is
a term.

Example 3. Terms represent specific objects which can be directly named by symbols of
constants: Meghan, Train25, 3, 2. Terms can be also indirectly named by unambigu-
ous relationships: mother(Sam), price(Train25), seller(Train25), +(2, 4). Terms
may be arbitrarily nested: mother(mother(Kate)), price(seller(train1)), +(0, 1).

Definition 13 (Atomic formula in first order logic[14]). Atomic formulas are also
called atoms. The set of all the atomic formulas of the language L is called AL. If P
is the predicate symbol with the arity n and t1, ..., tn are terms, so the sequence of the
symbols P (t1, ..., tn) is called a predicate atom of the language L. Predicate atoms of
the language are called atomic formulas (atoms) of language L.

Example 4. These are examples of atomic formulas in first-order logic:
woman(mother(x)), older(Erika, x), child(Michael,mother(Emma))

Definition 14 (Formula and set of formulas in first order logic[14]). A set of formulas
EL of the first-order logic language L is the smallest set of sequences of language L,
for which:

• All atomic formulas from AL are formulas.

• If A is a formula, so is ¬A.

• If A and B are formulas, so are (A ∧B), (A ∨B) and (A→ B).

• If x is an individual variable and A is a formula, so are ∃xA a ∀xA. (existential
and universal quantification of formula A with respect to x)

CHAPTER 1. BACKGROUND 8

Nothing else is a formula in first-order logic.

Example 5. This is an example of formula in first order logic:
(mother(x, y) ∧ child(y))→ woman(Adriana)

Definition 15 (Free and bound variables[14]). We define an occurrence of a variable
x in a formula A to be bound if it is either within the scope of some occurrence of ∀x
or ∃x, or else is itself immediately preceded by ∀ or ∃. An occurrence of x in A is called
free if it is not bound. Finally x is said to have a free occurrence in A if at least one
occurrence of x in A is free.

Example 6. (a) ∀x(P (x) ∧Q(x)) - x is bound in this formula

(b) ∀xP (x) ∧Q(x) - there is one free occurrence of x in the formula - Q(x)

(c) P (x)→ Q(x) - both x are free variables in this formula

(d) ∃y(P (x) ∨Q(x)) - both x are free variables in this formula

Definition 16 (Open, closed formula and evaluation of variables[14]). Let A be the
formula of language L. Formula A is closed if and only if it does not contain any free
occurrences of variables (e.g. free(x) = ∅). Formula A is open if and only if it does
not contain any quantifiers.

Example 7.
¬richer(x, y) ∧ hates(z, y) open not closed

∃y(¬richer(x, y) ∧ ∀z hates(z, y)) not open not closed
∃y∃z(∀x¬richer(x, y) ∧ hates(z, y)) not open closed

Definition 17 (Structure[14]). Let L be the language of first-order logic. The couple
M = (M, i) is a structure for language L where

• M is a non-empty set, called domain of the structureM;

• i is a representation function called interpretive function of the structure M,
which

– assigns element i(c) ∈M to every symbol of the constant c of L language,

– assigns function i(f) : Mn → M to every functional symbol f with arity n
of L language,

– assigns a set i(P) ⊆ Mn to every predicate symbol P with arity n of L
language.

Example 8. Let’s find a structure for language Lfamily for simplified relationships
with symbols of constants CL = {Daphne,Andy,Meghan, Sam}, predicate symbols and
PL = {parent2, woman1}, functional symbols FL = {mother1, sibling1} and symbols

CHAPTER 1. BACKGROUND 9

of individual variables VL = {x, y, z}.
M = (M, i)
M = d, s, m, a, l
i(Daphne) = d, i(Sam) = s, i(Meghan) = m, i(Andy) = a

i(mother) = {d→ m, a→ m}
i(sibling) = {d→ a, a→ d}
i(woman) = {d,m}
i(parent) = {(m, s), (s,m)}

Definition 18 (Evaluation of variables[14]). An evaluation of (individual) variables is
any function e : VL →M (assigns variables to a domain elements).

By writing e(x/v) we denote the valuation of the individual variables that assigns
the variable x the value v from domainM and all other variables the same value as e.

Example 9. We will use the structure from example 8. We define a term t1 =

sibling(x). We define evaluation e = {x→ d}.
We assigned the variable x from the domainM to d. Therefore the value of our term
t1 under evaluation e is t1 = sibling(x) = sibling(d) = a.

Definition 19 (Substitution and its application[14]). Let L be the language of first-
order logic. Substitution (in language L) for any set of individual variables is every
mapping σ : V → T of variables from V to terms of language L.

Example 10. Let CL = {a, b}, FL = {g2, f 3}. Then for example σ1 = {x 7→ a, y 7→
f(a, x, y)} is substitution.

We want to use the substitution to replace variables in terms and formulas. How-
ever, we must be careful about some special cases.
Let A be a sequence of symbols. Term t is substitutable for variable x in A if and only
if there is no free occurrence of the variable x in A. Any variable y present in t, must
not be within the scope of the formula’s quantifier ∃y or ∀y.
Substitution σ = {x1 7→ t1, . . . , xn 7→ tn} is applicable on A if and only if for every i,
1 ≤ i ≤ n, term ti is substitutable for xi in X.

Example 11. No term, which contains y, (ex. y, bff(y)), is substitutable for variable
x in formula ∀y hates(x, y). The variable y is bound in the formula.

Definition 20 (Satisfying a set of formulas in a structure[14]). Let S be the set of for-
mulas of language L, letM be a structure for L, let e be an evaluation of propositional
variables.

• Structure M satisfies the set S in evaluation e (in short M |= S[e]) if and only
if M |= Y [e] is true for every formula Y from S.

CHAPTER 1. BACKGROUND 10

• Structure M satisfies the set S (in short M |= S) if and only if M |= Y is true
for every formula Y from S.

Definition 21 (Satisfiability of first-order formula and set of formulas[14]). Let X be
a formula of language L and S be a set of formulas of language L.

• Formula X is satisfiable if and only if at least one structure M for L satisfies X
under at least one evaluation e.

• The set of formulas S is satisfiable if and only if at least one structure M for L
satisfies S in at least one evaluation e.

• Formula X (set of formulas S) is non-satisfiable if and only if it is not satisfiable.

A formula is called valid if and only if every structure M for language L satisfies
X under each evaluation e. Validity of formula can be understood as a special case of
satisfiability, when every structure M for L satisfies a set of formulas S under their
every evaluation e. Valid formulas are a first-ordinal analogy of tautology.

Definition 22 (First-order entailment of formula from a set of formulas[14]). Let X
be a formula in language L. Let S be the set of formulas in language L. Formula X
(first-orderly) follows from S (in short S |= X) if and only if for every structure M for
L and every evaluation e is true, that if M satisfies S in e, then M satisfies X in e.

Definition 23 (Gama and Delta rules[14]). When creating a tableau in first order
logic, we use Alpha, Beta, Gamma and Delta rules. The former two were described
in definition 8. We will describe the latter two. The gamma and the delta rules are
defined as follows:

γ
T∀xA

TA{x 7→ t}
F∃xA

FA{x 7→ t}
unanimously:

γ(x)

γ1(t)

δ
F∀xA

FA{x 7→ y}
T∃xA

TA{x 7→ y}
unanimously:

δ(x)

δ1(y)

We can use gamma or delta rule only if there is a quantifier which applies to the whole
formula.

Example 12. These are examples of formulas which a gamma or delta rule can be
applied to: ∀x(P (x) ∨Q(x)), ∀x(P (x) ∨Q(y))

Example 13. In the following examples, we can not apply gamma or delta rule:
∀xP (x) ∨ Q(x), (P (x) ∨ Q(x)), ∀yP (x) ∨ Q(y) or in ∀x(P (x) ∨ ∃yQ(y)) when sub-
stituting for y.

CHAPTER 1. BACKGROUND 11

The following rule is specific for substitution when we use gamma. We can substitute
the original variable with a term or a constant. The substitution has to be applicable.
The substitution is not applicable if a substituting constant or term are incorrect. The
new substituting constant is incorrect if it looks like a variable which is bound in refer-
enced formula. The new substituting term is incorrect if it contains a variable which is
bound in referenced formula.

The following rules are specific for substitution when we use delta. We can substitute
the original variable only with a constant. A substituting term can not be used in
substitution. The substitution has to be applicable. The substitution is not applicable
if a substituting constant is incorrect. The new constant is incorrect if it looks like a
variable which is bound in referenced formula. Substituting constant can not be located
somewhere above in the tableau as the free variable.

In general, when applying gamma, we can use any constant. When applying delta,
we have to use new constant.

We have to be careful when to choose which one. We usually choose delta over
gamma always if possible.

Example 14 (Example of tableau in first-order logic). The following example demon-
strates the proof using method of analytical tableau in fist-order logic. We prove by
contradiction that the following formula is valid. Formula in first order logic is valid if
it is satisfied in every structure and under every evaluation.
(∀xP (x)→ Q(x))→ (∀xP (x)→ ∀xQ(x))

Let’s suppose the given formula is not valid. Therefore we sign it with F sign.
Now we need to apply alpha, beta, gamma or delta rules until no rule can be applied.
Formulas in a branch are satisfied simultaneously.

(1) F(∀xP (x)→ Q(x))→ (∀xP (x)→ ∀xQ(x))
(2) T∀xP (x)→ Q(x) α(1)
(3) F(∀xP (x)→ ∀xQ(x)) α(1)
(4) T∀xP (x) α(3)
(5) F∀xQ(x) α(3)
(6) FQ(a) δ(5) {x→ a}
(7) TP (a) γ(4)
(8) TP (a)→ Q(a) γ(2) {x→ a}
(9) FP (a) β(8) (10) TQ(a) β(8)

∗ between (7) and (9) ∗ between (10) and (6)

As we see, formulas FP (a) and TP (a) are in one branch but can not be satisfied
simultaneously. Therefore there is a conflict in the branch. Since we got conflicts in
every branch of this tableau, we have a conflict with the assumption. It means, that the
given formula is valid.

CHAPTER 1. BACKGROUND 12

1.3 Similar work

We have done some research to find out and explore other similar works. We are going
to describe their features in comparison with what features we want from our tool to
have.

1.3.1 Tableau Editor

Ján Kľuka and Jozef Šiška have created a web application called Tableau Editor. [11]
This editor has embedded basic binary connectives, one unary connective, parsing
formulas, signed formulas with T and F characters, alpha and beta rules. It allows
users to create an incorrect tableau and indicates mistakes. Tableau is also rendered
visually as a tree. The editor works only for propositional logic, not for first order
logic.

1.3.2 Ruzsa

Author of Ruzsa, the similar tableau editor implemented as web application, is Tamás
Bitai [1]. After thoroughly reviewing his application, we found that it also works
for first-order logic. It implements basic binary and unary connectives, quantifiers,
formulas, alpha, beta, gamma and delta rules, and many other nonstandard features
lacking documentation. The application works for both propositional and first-order
logic, but it is unfortunately counterintuitive. It does not allow the creation of an
incorrect tableau. The application is used to proove the Tarski’s world [17] with the
method of analytical tableau. It is programmed in JavaScript and Angular.

1.3.3 Logitext

We found Logitext an online editor for teaching how the Sequent calculus work [19]. Its
author is Edward Yang. It includes a very accurate tutorial which is very helpful. The
author explains how the Sequent calculus works and how to prove with his tool. We
tried the editor and discovered, that it is possible to brute force a proof by clicking on
the particular right arrow. The tool works for first order logic as well as for propositional
logic. It is implemented in Haskell - a functional programming language and in other
two languages.

1.3.4 Clausal Language

CL (Clausal Language) is a declarative programming language with the look and feel of
a modern functional programming language. [8] CL comes with its own proof system
(intelligent proof assistant) in which the user can state and prove properties of his

CHAPTER 1. BACKGROUND 13

functions and predicates. [8]
Clausal language comes with its own proof system, which can also be used for methods
other than the analytical tableau method. This means that it does not draw a tableau
as a tree structure, unlike the above-mentioned similar works. The idea of a tree tableau
is lost in this system and is therefore not suitable for teaching the tableau method. Its
author is Ján Komara.

1.3.5 Other tools for teaching first-order logic

There are also other non-tableau based logic tools as Fitch [16], Boole [15], Tarski
[17], and others [18]. Their authors are people from the Stanford University. Monika
Švaralová worked on a program for teaching mathematics in her bachelor thesis. [20]
This program can teach students the principals of only propositional logic.

1.4 Technologies

We are going to build our application upon the work of Ján Kľuka and Jozef Šiška and
improve their tool. As the original tableau editor was written in Elm, we decided to
use Elm in our work.

1.4.1 Elm

Elm has its own DOM implementation and is compiled to JavaScript. We can create
a web application in it. Elm uses type inference and therefore is a strongly typed
language. This helps to detect runtime errors during compilation. If an error occurs
a friendly error message is shown in the console. Therefore, an application written in
Elm can not throw a runtime error[4]. In case of interacting with JavaScript there can
occur a runtime error, but stays on the JavaScript’s side of the application.

The outputs of an Elm program are not streamed - printed in run time. They are
printed once when the whole process is finished. As long as we are waiting for the code
to finish evaluation, we will not see anything.

It is possible to create an infinite loop in Elm. Let’s suppose we have created one
and there is a Debug.log command inside it to print something out in every iteration.
If we hit ctrl+c to end evaluation prematurely, Elm ignores the output that is returned
to it. So nothing will be printed.

We will use elm-live package [2] to create a development server. Thanks to its
hot-reload feature it is very developer-friendly to use it while development process.

CHAPTER 1. BACKGROUND 14

Consequences of an Elm application

Elm is a functional language. Any function that is given the input x always returns the
same output y. The disadvantage is that it is almost impossible to generate a random
number. Elm solves this with commands.

When creating an Elm application, we need to define four functions. One of them
returns the initial state, the second updates the state based on the action message,
the third renders the data from the model and the fourth handles requests which may
interact with JavaScript.

If we want to change anything in the view, we need to make some action - for
instance, click a button. The dispatcher is triggered and returns a message. The state
is updated according to this message and subsequently rerendered. The data flows
only in one direction. This is called the Flux principle [13]. The advantage of the Flux
principle is a separation of concepts view and model. This brings modularity to our
code. We can redesign our view without touching the model. The other advantage
is that we spend less time with debugging our application. The state is not mutated
directly but only if an appropriate message comes. It is hard to debug when any
object can change itself in any time. Using Flux principle we have better control over
the data flow in an application. Another advantage is that we can easily track and
save every state which is our application currently in. Thanks to this we can easily
implement undo and redo functionality. The easiest and usual way to implement undo-
redo functionality in functional languages is using the structure shown in Listing 1.1.

1 type alias History state =

2 { past: List state

3 , present: state

4 , future: List state

5 }

Listing 1.1: Undo/redo implementation in Elm

We can notice that concatenating reverse(past) + +[present] + +future creates one
array with all states in order as they were created.

We keep all of the past states, we remember current state and remember all of the
future states which we went back from. This structure is easy to work with. When we
want to move one state forward, we prepend the present state to the list of past states
and put the first state from future states into the variable for the present state.

Zipper

Zipper is a data structure used in functional programming languages. It is usually used
for representing and moving up and down a tree, list or a tuple. It has few advantages.
We will demonstrate them in analogy to the list.

CHAPTER 1. BACKGROUND 15

If we want to modify an element in an array in functional programming, we need
to copy first (n-1) elements. Then we modify the element and create the new array
from the copied elements and the modified one. The time complexity of this operation
is O(n). Instead of array, we can represent list in the zipper. For example, the list of
[first, second, third, fourth, fifth] can be represented as

- ((second first) third (fourth fifth)).
For every node we will keep three types of information. The previous element, the

content of actual element and the next element. In this structure we keep the focus on
the actual element, so it can be modified in O(1) time complexity. We can also easily
shift the focus to the left ((first) second (third fourth fifth)) and to
the right ((third second first) fourth (fifth)). In a tree, we can shift
focus to the parent or to the child - up or down. The nodes at the focus are easily
modifiable.

Breadcrumbs are used to retain information about parts of the tree that move
out of focus. As the tree is navigated, the needed context is pushed onto the list of
breadcrumbs, and they are maintained in the reverse order in which they are visited.
[7]

1.4.2 Yarn

Yarn is a package manager for packages designed for JavaScript. Since npm - the other
package manager for Javascript packages - had some issues when installing Elm, we
decided to use Yarn as package manager. Package manager allows us to install packages
in the scope of a particular project. Thus we can use different version of a particular
package for other project. We install packages elm[4], elm-live[2] and elm-make[5].

Chapter 2

Problem specification

Our work aims to create a web application, which will serve as an assistant during
the creation of an analytic tableaux proof. In section 1.3.1 we mentioned similar
application. We decided to continue in that work and add features to it to meet our
requirements. The requirements for our final application are as follows:

Visualisation, validation and mistakes highlighting.

• In our tableau assistant, it must be possible to create a proof in propositional
logic and first-order logic.

• The editor will be able to recognize and parse first-order formulas.

• The proof must be visualized as a tree.

• It should be possible to distinguish between premise and non-premise.

• Formulas will be validated according to the alpha, beta, gamma and delta rules.

• The tableau assistant must validate our proof and highlight our mistakes.

• It should be possible to prettify the formulas. Characters as
− >, /\, \/, \forall, \exists must be replaced by →,∧,∨,∀,∃. It should also
remove unnecessary parenthesis.

Manipulating the proof.

• The root of the proof can be only an alpha node.

• It should be possible to extend the tableau by adding a new node wherever
needed. Not only under the leaves.

• When adding a beta below a node n, the direct successor of n becomes the direct
successor of one of the beta formulas.

16

CHAPTER 2. PROBLEM SPECIFICATION 17

• It must be possible to delete an arbitrary node in a tree and a sub-tree of a node.

• Deleting one of the beta trees should be possible only if the beta node does not
contain a formula and any sub-tree. The other beta becomes an alpha continua-
tion of the tableau.

• It must be possible to undo or redo our steps.

• Sub-trees of type beta can be easily swapped. Left to right and right to the left.

• It should be possible to close a branch and reopen it.

• Changing the type of formula should be possible. When changing between gamma
and delta, the substitution must remain the same.

Persistance.

• It must be possible to export our tableau and import it later to continue in
proving.

• It must be possible to print out our tableau or save it in pdf format.

Chapter 3

Design

To satisfy requirements from Chapter 2 we need to reimplement the proof structure,
implement validation of Gamma and Delta rules, implement undo-redo functionality
and other parts of editor’s logic. We are going to improve the user interface so that
the user can interact more intuitively with the tableau editor. The main two groups
of concern in this chapter are application’s new logic features and improvement of the
user interface.

3.1 Application logic

It may not be evident to the user that some parts of the original application’s logic were
reimplemented. They will work the same way. However, refactoring is very beneficial
for every application. Not refactoring the original code precisely before adding new
lines of code would lead to the messy and unmaintainable code.

3.1.1 Proof structure

In the old tree representation we parsed the formula every time we wanted to validate
it. It means every time the state changed, the update and view functions were called,
and all of the formulas were parsed and validated again. In the new tree representation,
we store the parsed formula in the state. It is not necessary to parse it every time after
a state change, and therefore it saves resources.

The content of the node and sequel of the tableau below the node were not separated
in the old tree structure. Work with this structure was more arduous as we heavily
used the Elm’s Maybe type. For example, every Leaf kept the information whether its
branch is closed or not. This information was represented by Leaf Maybe (reference1,
reference2). If the branch was not closed, there was no tuple to keep. To check if the
referred nodes are in contradiction, we had to check if there is some tuple at all.

The design of our new proof structure is as can be seen in Listing 3.1.

18

CHAPTER 3. DESIGN 19

1 type alias Tableau =

2 { node : Node, ext : Extension }

3
4 type alias Node =

5 { id : Int

6 , value : String

7 , reference : Ref

8 , formula : Result Parser.Error (Formula.Signed Formula.Formula

)

9 , gui : GUI

10 }

11
12 type Extension

13 = Open

14 | Closed Ref Ref

15 | Alpha Tableau

16 | Beta Tableau Tableau

17 | Gamma Tableau Substitution

18 | Delta Tableau Substitution

Listing 3.1: Tableau structure

We created Tableau record which has 2 variables. The node variable for storing the
node’s content and the ext variable for keeping the sequel of the tableau. We store
five types of information in every node. The node’s unique identifier, the string rep-
resentation of a formula, the reference to the node which was the actual node derived
from, the parsed formula and the variable gui which we use when rendering the proof
to HTML. The ext variable keeps the objects of type Extension. The extension can be
Alpha which contains a tableau as a child, Beta which contains left and right tableau
children, Gamma and Delta which contain substitutions and a tableaux as children,
Open which serves as the tail of a branch and Closed node which keeps two references
of contradicting nodes. This way we created a structure which is easy to work with
and separated concepts - node’s content and the sequel of a tableau.

3.1.2 New zipper structure

We modified zipper’s structure to represent also gamma and delta nodes with their
substitutions. We can see the zipper’s design in the Listing 3.2. Zipper for a node
consists of the Tableau for the actual node and the Breadcrumbs. The type Breadcrumbs
is list of all predecessor nodes of an actual node. Every Crumb type keeps a node’s
direct ancestor. We defined five types of Crumb.

The type BetaLeftCrumb stores the Tableau of its sibling and parent’s node. The

CHAPTER 3. DESIGN 20

same for BetaRightCrumb. The type GammaCrumb and DeltaCrumb store the node
of their parent and their Substitution. The type AlphaCrumb stores only the direct
ancestor’s node.

1 type alias Zipper =

2 (Tableau, BreadCrumbs)

3
4 type alias BreadCrumbs =

5 List Crumb

6
7 type Crumb

8 = AlphaCrumb Node

9 | BetaLeftCrumb Node Tableau

10 | BetaRightCrumb Node Tableau

11 | GammaCrumb Node Tableau.Substitution

12 | DeltaCrumb Node Tableau.Substitution

Listing 3.2: Zipper structure

3.1.3 Parsing and validating first-order formulas

Ján Kľuka already programmed the parsing of first-order formulas in the original
tableau editor [11]. He used Elm’s Parser module. This module was written by the
creator of Elm language and is used for parsing strings in Elm. We will use Ján’s parser
in our work and parse a formula every time the user changes the string in the input
for a formula.

3.1.4 Validation

As validation of Alpha and Beta rules work the same way in the first-order logic as
in propositional, there is no need to implement them again. The only feature we will
implement is that beta sub-formula cannot be a premise.

3.1.5 Gamma rule validation in first-order formulas

A gamma sub-formula is valid if and only if it meets the specific assumptions which
should be checked in the following order:

1. It has to have a valid reference. The reference is valid if it refers to some formula
above.

2. Gamma sub-formula cannot be a premise. Its reference cannot point to itself.

CHAPTER 3. DESIGN 21

3. Applying gamma rule to the referenced signed formula must result in the given
formula. The referenced formula has to have a form of T∀xP (x) or F∃xP (x)

4. The substitution has to be applicable. The new term is incorrect if it contains
a variable which looks like a bound in the referenced formula. We refer to the
Definition 19, which explains the theory around the applicability of a substitution.

5. Only the quantified variable right behind the T or F sign can be substituted. If
there is no quantifier, the gamma rule cannot be applied.

6. The substitution has to be written correctly. The term replaces the given variable
without a typo. No other variable is replaced.

3.1.6 Delta rule validation in first-order formulas

A delta sub-formula is valid if and only if it meets the specific assumptions which
should be checked in the following order:

1. It has to have a valid reference. The reference is valid if it refers to some formula
above.

2. Delta sub-formula cannot be a premise. Its reference cannot point to itself.

3. Applying delta rule to the referenced signed formula must result in the given
formula. The referenced formula has to have a form of F∀xP (x) or T∃xP (x).

4. The chosen substituting term has to be a constant and not a function.

5. The substitution has to be applicable. The new term is incorrect if contains
a variable which looks like a bound in the referenced formula. We refer to the
Definition 19, which explains the theory around the applicability of a substitution.

6. Only the quantified variable right behind the T or F sign can be substituted. If
there is no quantifier, the delta rule cannot be applied.

7. The substitution has to be written correctly. The term replaces the given variable
without a typo. No other variable is replaced.

8. Substituting constant can not be located somewhere above in the tableau as the
free variable.

CHAPTER 3. DESIGN 22

3.1.7 Substitution

Substitution is performed during validation according to the Gamma and Delta rules.
In a formula that starts with a quantifier and a quantified variable, we can substitute
this variable for a suitably chosen term.

Ján Kľuka already programmed the substitution. This function takes the formula
and a Substitution record and returns either correctly substituted formula or an error
message if the substitution is not applicable. We will use this function to validate the
user’s substitution.

3.1.8 Undo, Redo

As a tableau grows big and become complex, the modification may be time-consuming.
Because of the complexity of the tableau, every modification may be a destructive
operation which may cause an undesired effect. Therefore it is essential to implement
the undo-redo functionality.

Thanks to the Elm architecture, application’s data flow in one direction only. It
means, every time a button is clicked or a character is typed, the state changes. We
will store all past states of the application. In case of a mistake, we can go to the very
first state of our tableau or go few steps back.

We will implement two buttons. One for undo step and one for redo step.

3.2 User interface improvements

The user interface of the original tableau editor[11] was usable but not user-friendly.
If we wanted to delete a node, we had to delete the node with its whole sub-tree. If we
wanted to add another premise to our semi-finished tableau, we could not add it right
below the last premise, but only below an opened branch.

The action buttons - for import, export, prettify and print - were below the tableau.
Every time the user added a node, the section with these buttons jumped down. This
behavior is not very user-friendly. We place these buttons to above the tableau.

Students usually create tableau with many branches so it can be enormous. An
advantage of the original user interface was that it saved space. Therefore the buttons,
inputs and all of the elements will be small and designed simple enough to retain this
advantage.

The error messages were not clear enough as they were shown all together below
the tableau. We show an error message near every node if there is one.

For better user interaction we add the E button (as edit) next to every node. This
button will hide and show controls which modify the node or node’s extension. This
way we save the space near every node and manipulating the node is possible as well.

CHAPTER 3. DESIGN 23

3.2.1 Render the tableau using html div elements

The original tableau structure was being rendered using tables. Rendering the tree to
HTML table was very complicated way of displaying the tableau. The rows of sub-trees
had to be merged correctly so that the very top layer of the tableau had to have as
many columns as the number of leaves in the tree. Rendering the tree with the div
elements is more reasonable than rendering the tree using a table.

3.2.2 Add a node anywhere in the tree

It would be nice to be able to add a premise below the last premise even if there is some
sub-tree. Adding a node will be possible almost anywhere in the tree. However, we
cannot add a node above the root. We cannot replace one of the beta nodes with alpha
node since it would break the structure of the proof. Adding a node will be possible
by clicking on the button. This button will be shown under every node when the E
button is clicked. The node, below which we add the new node, becomes parent of
the new node. The extension of the parent becomes the extension of the newly added
node.

3.2.3 Deleting arbitrary nodes

Deletion of a single node has several criteria:

• The child of the deleted node becomes the child of the deleted node’s parent.

• A student can delete the root if only if the node below the root is an alpha node.

• A student can delete one of the beta sub-trees if and only if it does not have any
sub-tree and any value in the input for the formula.

• If a student deletes a beta sub-tree, the remaining beta sub-tree converts to an
alpha sub-tree. This alpha sub-tree will be the sequel of the tableau instead of
the original two beta formulas.

3.2.4 Delete the sub-tree of a node

Students will be able to delete the whole sub-tree of a particular node in the tree. This
feature will be useful when getting rid of a large and redundant sub-trees. To delete
the sub-tree, we need to show the node’s controls by clicking on E. Then we click on
the Delete button and choose one of the options - sub-tree or node.

CHAPTER 3. DESIGN 24

3.2.5 Swapping beta sub-trees

The student would like to arrange his tableau visually and move open branches to the
left or right. We want to allow him do that.

The student will be able to swap beta sub-trees in our tableau editor. Under every
node, which has direct beta sub-trees, will be a button for swapping beta sub-trees.

3.2.6 Change of formula type

Imagine the following situation. The user added a gamma sub-formula below a premise.
The user already wrote a formula and substitution to the inputs. However, then the
user realized, it should be delta sub-formula. Instead of adding a delta node, copying
the inputs manually and deleting the gamma node it may be helpful to change the
formula’s type.

Changing a node’s type will be subject to following conditions:

• The root node can be only an alpha node. It means this node cannot be changed.

• When changing from gamma node to delta node or vice-versa, substitution re-
mains the same.

• A node of type Beta cannot be changed to anything else if its sibling has a
sub-tree or a value in its formula input.

Chapter 4

Implementation

In this chapter, we describe the main aspects of our implementation. The resulting
functionality was already described in Chapter 3.

4.1 New proof structure

We implemented the proof structure as designed in Chapter 3. This new structure
influenced some parts of the original application. Thus we had to reimplement them.
It is essential to mention that there is a difference between node’s parent in the tree and
the referenced node. The parent p of the node n is such node, which is located right
above the node n in the tree and contains the node n as an extension. The referenced
node r is such node which is the node n’s formula derived from. A formula does not
have to be derived from the node located right above. Therefore we need to keep the
information about the referenced node in every node.

A node can be either derived from a predecessor or a premise. We derive the node
from a predecessor by applying one of the four mentioned rules: alpha, beta, gamma
and delta. To set a formula as a premise, it has to refer to itself.

4.1.1 Zipper reimplementation

For better understanding, we are going to demonstrate the changes on the function
down of the zipper. The argument of this function is a zipper, and it returns the
zipper representing the node below. In short, this function moves the focus in the
zipper to the node below. It is used in functions like renumber when renumbering the
identifier of the node.

In the original implementation, the sequel of the tableau was not separated from
the content of the node. We used case t of to ask for the continuation of the tableau.
We could access the actual node in every branch. If we wanted to preprocess the node

25

CHAPTER 4. IMPLEMENTATION 26

in the let...in section before matching some of the case branches, we could not do that.
Formerly down worked only on the alpha sub-tree as we can see in the Listing 4.1.

1 down : Zipper -> Zipper

2 down (t, bs) =

3 case t of

4 Alpha n st ->

5 (st, (AlphaCrumb n) :: bs)

6 _ ->

7 (t, bs)

Listing 4.1: Original down function

As we separated the node’s content from the continuation of the tableau, we gained
access to the t.node in the let...in section. This is an advantage if we want to preprocess
the node and do not want to duplicate the code in every case branch.

We had to add another two cases - Gamma and Delta. These two hold sub-tableau
as a sequel and their substitution. As applying Gamma and Delta rules does not create
two sub-trees as applying the Beta rule, we can apply down function to them. We can
see the new down function in Listing 4.2.

1 down : Zipper -> Zipper

2 down (t, bs) =

3 let

4 preprocessed = identity t.node

5 in

6 case t.ext of

7 Alpha subtableau ->

8 (subt, AlphaCrumb preprocessed :: bs)

9
10 Gamma subtableau substitution ->

11 (subtableau, GammaCrumb preprocessed substitution ::

bs)

12
13 Delta subtableau substitution ->

14 (subtableau, DeltaCrumb preprocessed substitution ::

bs)

15
16 _ ->

17 (t, bs)

Listing 4.2: Down function moves the focus down the tree

CHAPTER 4. IMPLEMENTATION 27

4.2 Unit tests

We wrote tests to check that our new functionality is correct.
We tested the cases when the substitution can and cannot be applicable if the

formula begins with a quantifier and quantified variable, if there is exactly one variable
we want to substitute and if it is the one right after the quantifier.

We also wrote tests for the refactored functions which work with zipper. Other
tests we wrote tested whether the tableau as a proof structure is valid - for instance,
tests for renumbering the references correctly.

4.3 Substitution

To perform substitution, we have to do it according to the rules mentioned in Chapter
3. Substitution was initially implemented as a part of the tableau editor’s code. Zoltán
Onódy needed to parse propositional and first-order formulas in his work[12] as well, so
he extracted the Formula.elm parser to a separate module [9]. We implemented function
removeQuantifierAndSubstitute in this separated module and use this function when
validating user’s substitution. It connects our validation functions with substitute in
formula module [9].

We had to create a new record to save the substitution in the state for every gamma
and delta node. We can see it in Listing 4.3. The user enters which constant or term
he wants to substitute and for which variable he wants to substitute it.

1 type alias Substitution =

2 { term : String, var : String }

Listing 4.3: Substitution record

4.4 User interface

To improve the user interface, we wrote custom CSS styles which was quite time-
consuming. These styles enable uz to hide or show options for every node by clicking
on the button labeled with the letter E. The information whether they are hidden is
saved in the application state. The controls are used for adding a specific node type,
deleting a node or a sub-tree, changing the node type, closing the branch and reopening
the branch.

CHAPTER 4. IMPLEMENTATION 28

4.5 Validation of Gamma and Delta rules

The validation functions are written in a way that they chain functions validating the
given formula according to the particular rule. They very heavily use the functionality
of Result and Maybe types. We had to adjust our functions used in validation so they
can be chained with those types.

4.6 Undo, Redo

To work with history, we used the undo-redo [3] module which was created by Elm
community. Implementing history usage to our application changed slightly the way,
how we work with the model’s variable in the update and view functions.

4.7 Adding and deleting a specific node

We remind that there is a difference between node’s parent and a referenced node. This
difference was described in Section 4.1

When deleting a particular node, we need to do so from the view of the node’s
parent. We need to attach the node’s parent to the node’s child. The referenced node
in every node is represented the same way as in the original editor. We can see this
representation in Listing 4.4.

1 type alias Ref =

2 { str : String, up : Maybe Int }

Listing 4.4: Reference record refers to the node which was a formula derived from

Every node has a unique numerical identifier. This identifier is stored in the node’s
id variable. The str field in Ref record stores the string representation of referenced
node’s identifier. The up field represents how many nodes above is the referenced node
located. We need the up field in case of renumbering the identifiers. If a node is added
or deleted, we renumber the identifiers to have a continuous sequence of them from 1
to n. In this case, it is useful to know how many nodes above is the referenced node
located as we cannot trust the changing identifiers.

When deleting the node, we attach the node’s parent to the node’s child. When
deleting one of the beta sub-trees we send the reference of the sub-tree’s parent. This
information does not help us to determine whether we want to delete the right or
the left sub-tree. In case of deleting one of the beta sub-trees, we need to work with
breadcrumbs to determine which sub-tree we want to delete.

We have to renumber the references when deleting or adding a node in the tableau.
In the original representation, we could delete only the whole sub-tree and add a new

CHAPTER 4. IMPLEMENTATION 29

a

b

c

d

e f

up: Just 0

up: Just 0

up: Just 1

up: Just 2

up: Just 1 up: Just 1

a

b

d

e f

up: Just 0

up: Just 0

up: Just 1

up: Just 1 up: Just 1

Figure 4.1: Tableau before and after deleting the node

node only below the Leaf. Every identifier renumbered just fine because the only thing
that changed in the reference was the str variable. We could rely on the fact, that
the up variable did not change at all. In the new implementation, there might be a
problem with renumbering because the up variable may change. Consider the situation
represented in Figure 4.1

The x in Just x represents how many steps above is the referenced formula located.
Nodes a and b are premises. Node c and d are deduced from the b node and nodes e
and f are deduced from the d node. Now, we would like to delete the c node. Since
the reference of node d is pointing somewhere above the deleted node, we have to
renumber the mentioned x in the d node’s reference. Since the reference of node e
and f is pointing somewhere below the deleted node, we cannot renumber their up
variables. References which point to c remain the same. Renumbering them would not
make them valid.

In other words, if the mentioned x would be bigger or equal to one plus the length
of the path from the parent of the deleted node we would change it to x − 1. Listing
4.5 shows the code which renumbers the up variable when deleting a node.

1 if x >= lengthOfPathFromDeletedNodesFather+1 then

2 Ref ref.str (Just (x - 1))

Listing 4.5: Renumbering up when deleting

Consider the situation when adding the node somewhere in the middle of the tree

CHAPTER 4. IMPLEMENTATION 30

a

f

b

c

d e

up: Just 0

up: Just 1

up: Just 0

up: Just 1

up: Just 4 up: Just 4

a

b

c

d e

up: Just 0

up: Just 0

up: Just 1

up: Just 3 up: Just 3

f up: Just 1

Figure 4.2: Tableau before and after adding the node

as shown in Figure 4.2:
Nodes a and b are premises. Node c is deduced from the node b and nodes d and

e are deduced from the node a. We added the node f between the a node and the b
node. Since the referenced node of node c is located below the added f node, we do not
need to renumber the mentioned x in reference record of node c. Since the referenced
node of d and e nodes is located above the added node, we need to renumber their x.

In other words, if the mentioned x would be bigger or equal to the path from added
node’s father minus one path − 1 we change it to x + 1. Else, there is no need to
renumber. Listing 4.6 shows the code which renumbers the up variable when adding a
node.

1 if x >= lengthOfPathFromAddedNodesFather-1 then

2 Ref ref.str (Just (x + 1))

Listing 4.6: Renumbering up when adding

When we encounter Just 0, there is no need to renumber. A formula which contains
up = Just 0 variable in the reference remains the same when adding or deleting a node.
Such formula is a premise because it is referencing itself.

Chapter 5

Evaluation

To evaluate our work, we needed to test it. Because our tableau editor is designed for
students of the subject Mathematics (4) - Logic for programmers, we asked some of the
students to help us. They were given specific tasks, and they had to complete. They
could ask any time they did not know what to do. After they finished the assignment,
we discussed the troubles they had and the features of the editor. In the end, they
were asked questions from the questionnaire 5.3.

5.1 The goal of testing

Our testing aimed to find out whether our tableau editor is intuitive, useful and prac-
tical for students. For what purpose would they use it and if they would recommend it
to a classmate. We wanted to know what features they are missing in our editor and
what features they consider useless or even disturbing.

5.2 Task assignments

We presented students with an assignment, where they had to prove in first-order
logic, that a particular formula can result from the given theory. They were given two
premises and one statement. They had to prove, that the statement can result from
the given two premises. The specific assignment was:
{∀x(dieta(x)→ darcek(x)),∃xdieta(x)} |= ∃xdarcek(x)

Another assignment included:

1. create beta sub-formulas,

2. change them,

3. delete one whole beta sub-tree.

31

CHAPTER 5. EVALUATION 32

5.3 Questionnaire

After discussing the useful and disturbing features of our editor, students were asked
following questions.

1. At how many points from 0 to 10 was the user interface of our editor intuitive?

2. What purpose would you use the editor for?

3. Would you recommend the editor to your classmates?

5.4 Results of testing

We tested our editor on 12 students. We are going to summarize their feedback, and
then we present the results of the questionnaire in table 5.1.

Only one of the tested students tried the original tableau editor. Others could not
give us feedback in comparison with the original tableau editor.

For seven of the students, it was not intuitive enough to add a node. Four of the
students found disturbing that they had to choose the node type before writing the
formula when adding a node. They would like to add a default node first then write
a formula and then decide what kind of node will it be. Adding a (+) button near
the controls, that adds a default node would solve the problem for them. Even if the
default node was an alpha.

The two inputs for substituted variable and substituting term tricked all of them
when entering the substitution. On Mathematics (4) class, they wrote the substitution
contrariwise. Five of them would improve the notation of substitution. They prefer
{original → new} over |new for original. Five of them lacked visual distinction
between gamma and delta as they look the same.

Five of them would improve the Help section. The original, which we also used, is
not easy to read. This might be the reason, why some of the students did not read it
at all and therefore had problems to construct a tableau. They would appreciate some
examples or a tutorial in the Help section.

Eight of them could not find the buttons for adding, deleting and changing the
node’s type. There is a button labeled with the letter E (as edit) next to every node
which is quite counterintuitive. They would label the button with a cogwheel to be
clear, that its purpose is to show or hide the controls which manipulate the node.

Eight of them did not know how to delete the last node in a closed branch. The
students were clicking on the E button next to the last node to find the delete button.
Nothing happened. They did not realize that they have to open the branch first and
then the rest of the buttons will appear. They did not realize that the o (open) button

CHAPTER 5. EVALUATION 33

in the closed node is used for opening the branch. They would label the button with
open word.

Two of them would label the button for closing the branch with close keyword
instead of ∗ character.

All of the students were lacking some tooltip when nothing happens. 4 of them
said, they would leave the application if there is no reaction to their action. In our
case, we wanted to delete one whole beta tree. However, they could not do it because
the beta node had some formula inside or sub-tree below. They correctly found the
delete node button but were surprised when nothing happened when clicked. A tooltip
would solve the problem.
We also considered not to wait until the user deletes the sub-tree and the formula in
the particular beta sub-formula, but this behavior would be inconsistent. We would
delete the whole beta sub-tree by clicking on delete node button. When deleting an
arbitrary node of type alpha, gamma or delta, we delete only a single node. This is
done by clicking on a button labeled with Delete and then clicking on an option node.
Since the beta formulas are strongly bound to each other, there is no way one could
exist without the other. Another thing when wanting to delete one beta sub-formula
is that it can have a beta as a child. In this case, we can not delete the particular
beta sub-formula. Therefore we did not implement the feature to delete only one beta
sub-formula without deleting its sub-tree.

5.4.1 Summary

Students found the functionality for changing the node type beneficial. If they had this
tool when they did not know the tableau proof yet, they would be delighted to use it.
All of them would solve their homework with our tool. They also found the feature
of deleting and adding the node anywhere in the proof’s structure useful. We noticed
they used undo-redo functionality very intuitively.

Although they found some buttons counterintuitive, they got used to them very
quickly. The case when there is no reaction to action would discourage 3 of the students
to use our tool.

Here is the list of the features they would implement

• Hide other section with node-modifying buttons when we have just opened one.
We still cannot work with 2 sections at once.

• They would appreciate to use the latex syntax when writing special characters
as \wedge instead of /\, \vee instead of \/, \rightarrow onstead of − >.

• One of them would appreciate to use keyboard shortcuts to manipulate the
tableau as he had a laptop and does not use a mouse.

CHAPTER 5. EVALUATION 34

• Two of them would implement rules as modus ponens, modul tolens and others.

• Two of them would implement a button for deleting the text in the input for the
formula.

• Three of them would like to have "import example from Help section" button.

What would you use the tool for? Number of votes
To check the correctness of my proof. 0
To prove my homework assignment. 0
Both, to prove and to check the correctness. 12
To learn how tableau proof works. 8
To learn for the exam. 2

At how many points from 1 to 10 was our tool intuitive for you? Number of votes
6 1
6.5 3
7 4
7.5 2
8 2

Would you recommend the tool to a classmate? Number of votes
Yes. 8
No. 0
I do not know. 4

Table 5.1: Summarized feedback from the questionnaire

Some of the features were implemented right after the testing. For example, we
labeled the button for expanding node’s controls with a cogwheel. We do not allow to
delete a node when the proper conditions are not met. We switched the substituted
variable and constant and improved the notation of the substitution. We implemented
adding a default node, which internally adds an alpha node. We labeled the buttons for
closing and opening a branch with Close and Open keywords. We improved the help
section to be more clear and helpful. It is now easy to navigate in it. Some features
do not have as high priority or would be time-consuming to implement them. For
example, implementing full latex syntax or manipulating the tableau with keyboard
shortcuts.
We would like to thank all of the students for helping us to test our tool.

Conclusion

In out thesis we extended and improved the functionality of the mentioned tableau
editor [11]. Our tableau editor works also with first-order logic which was our goal.
We improved the user interface which makes it easier for students to work with the
editor. A live version of our tool is available at https://fmfi-uk-1-ain-412.
github.io/tableauEditor/.

Our educational tool allows the student to create an analytical tableau proof. This
proof is visualized as a tree. Every node in the tree contains the formula, identifier
and a reference to a node which the formula was derived from. We apply four rules
to formulas in nodes to create a proof tree. The rules are categorized into four types,
alpha, beta, gamma and delta.

A node n can be either a premise or is derived by one of the four rules from a
node d which is located somewhere above the node n. The node does not have to
be derived from its parent but can be derived from any predecessor somewhere in the
tree. Applying a beta rule splits the proof into two branches. Gamma and delta nodes
contain a substitution.

The proof is validated every time an action is made. The editor highlights the
mistakes and so our tool acquires an educational character. A mistake is shown near
every invalid node.

We tested our tool on twelve students of the Mathematics(4) - Logic for informatics
class and implemented some of their suggestions. The evaluation was very helpful,
because students gave us a proper feedback. Their feedback also shows, that they
would use our tool to learn how analytical tableau proofs work. The majority of the
tested students would use our tool for completing a homework assignment.

Although all of the new features were implemented as designed, there are still things
which would improve the user’s experience. Our tool for proving by analytic tableaux
is more useful than the previous one. As some students have already suggested, it
would be nice to have a modus ponens or modus tolens functionality. It would be great
to manipulate the tableau with keybord shortcuts. As future work, we would also like
to implement the rules for equality to be able to prove in first-order logic with equality.

35

https://fmfi-uk-1-ain-412.github.io/tableauEditor/
https://fmfi-uk-1-ain-412.github.io/tableauEditor/

Appendix A: Source code

The source code of the tableau editor can be found on the attached CD. It is also avail-
able online at https://github.com/FMFI-UK-1-AIN-412/tableauEditor/
tree/master. The compiled and functional application is available at https:

//fmfi-uk-1-ain-412.github.io/tableauEditor/.

The source code on the attached CD has the following structure:

/tableauEditor There is a licence LICENSE in the folder named tableauEditor.
There are some information about how to set up the development environment
in the file README.md as well.

/tableauEditor/build/ contains the compiled code. To open the tableau editor in
the browser open /tableauEditor/build/index.html,

/tableauEditor/tests/ contains tests for our tableau editor,

/tableauEditor/src/ contains the source code of the tableau editor.

36

https://github.com/FMFI-UK-1-AIN-412/tableauEditor/tree/master
https://github.com/FMFI-UK-1-AIN-412/tableauEditor/tree/master
https://fmfi-uk-1-ain-412.github.io/tableauEditor/
https://fmfi-uk-1-ain-412.github.io/tableauEditor/

Bibliography

[1] Tamás Bitai. Ruzsa - Tableau Editor for Tarski‘s World. https://ruzsa.

tbitai.me, 2017. [Online; accessed 15-May-2018].

[2] Elm community. Develpment environment. https://github.com/

architectcodes/elm-live, 2017. [Online; accessed 15-May-2018].

[3] Elm community. Module which works with state history. http://package.

elm-lang.org/packages/elm-community/undo-redo/latest/, 2018.
[Online; accessed 15-May-2018].

[4] Evan Czaplicki. Elm lang. http://elm-lang.org/docs, 2012. [Online;
accessed 15-May-2018].

[5] Evan Czaplicki. Build tool for elm application. https://github.com/

elm-lang/elm-make, 2016. [Online; accessed 15-May-2018].

[6] Haim Gaifman. A hilbert type deductive system for sentential logic, completeness
and compactness. http://www.columbia.edu/~hg17/ViewMathLogic/

view1-deductive-system.pdf, 2002.

[7] Tom Kidd. Multiwayelmzipper. http://package.elm-lang.

org/packages/tomjkidd/elm-multiway-tree-zipper/latest/

MultiwayTreeZipper, 2016. [Online; accessed 15-May-2018].

[8] Ján Komara. Clausal Language- Programming Language and Proof Assistant.
http://ii.fmph.uniba.sk/cl/view/?lang=sk, 2016. [Online; accessed
15-May-2018].

[9] Ján Kľuka. Module for parsing formulas in elm. https://github.com/

FMFI-UK-1-AIN-412/elm-formula, 2018. [Online; accessed 15-May-2018].

[10] Ján Kľuka and Jozef Šiška. Prednášky z matematiky (4) - logiky pre informatikov.
https://github.com/FMFI-UK-1-AIN-412/lpi/blob/master/docs/lecs/poznamky-
z-prednasok.pdf, 2017. [Online; accessed 15-May-2018].

37

https://ruzsa.tbitai.me
https://ruzsa.tbitai.me
https://github.com/architectcodes/elm-live
https://github.com/architectcodes/elm-live
http://package.elm-lang.org/packages/elm-community/undo-redo/latest/
http://package.elm-lang.org/packages/elm-community/undo-redo/latest/
http://elm-lang.org/docs
https://github.com/elm-lang/elm-make
https://github.com/elm-lang/elm-make
http://www.columbia.edu/~hg17/ViewMathLogic/view1-deductive-system.pdf
http://www.columbia.edu/~hg17/ViewMathLogic/view1-deductive-system.pdf
http://package.elm-lang.org/packages/tomjkidd/elm-multiway-tree-zipper/latest/MultiwayTreeZipper
http://package.elm-lang.org/packages/tomjkidd/elm-multiway-tree-zipper/latest/MultiwayTreeZipper
http://package.elm-lang.org/packages/tomjkidd/elm-multiway-tree-zipper/latest/MultiwayTreeZipper
http://ii.fmph.uniba.sk/cl/view/?lang=sk
https://github.com/FMFI-UK-1-AIN-412/elm-formula
https://github.com/FMFI-UK-1-AIN-412/elm-formula

BIBLIOGRAPHY 38

[11] Ján Kľuka and Jozef Šiška. Tableau Editor. https://github.com/

FMFI-UK-1-AIN-412/tableauEditor/tree/oldmaster, 2017. [Online;
accessed 15-May-2018].

[12] Zoltán Onódy. A proof assistant for first-order logic. Comenius University,
Bratislava, 2018. Submitted.

[13] Josh Perez. Principles of flux. https://medium.com/@goatslacker/

principles-of-flux-ea872bc20772, 2015.

[14] Raymond M. Smullyan. First-order logic [by] Raymond M. Smullyan. Springer-
Verlag Berlin, New York [etc.], 1968.

[15] University Stanford. Boole- application for constructing truth tables. https:

//ggweb.gradegrinder.net/support/manual/boole, 2005. [Online;
accessed 15-May-2018].

[16] University Stanford. Fitch- application for constructing formal proofs in
first-order logic. https://ggweb.gradegrinder.net/support/manual/
fitch, 2005. [Online; accessed 15-May-2018].

[17] University Stanford. Tarski’s World. https://ggweb.gradegrinder.net/
support/manual/tarski, 2005. [Online; accessed 15-May-2018].

[18] University Stanford. Tools and proof editors for logic. http://intrologic.
stanford.edu/applications/applications.html, 2005. [Online; ac-
cessed 15-May-2018].

[19] Edward Z. Yang. Logitext. http://logitext.mit.edu/main, 2012. [Online;
accessed 15-May-2018].

[20] Monika Švaralová. Výukový program demonštrujúci matematický princíp,
bakalárska práca. FMFI UK, 2015.

https://github.com/FMFI-UK-1-AIN-412/tableauEditor/tree/oldmaster
https://github.com/FMFI-UK-1-AIN-412/tableauEditor/tree/oldmaster
https://medium.com/@goatslacker/principles-of-flux-ea872bc20772
https://medium.com/@goatslacker/principles-of-flux-ea872bc20772
https://ggweb.gradegrinder.net/support/manual/boole
https://ggweb.gradegrinder.net/support/manual/boole
https://ggweb.gradegrinder.net/support/manual/fitch
https://ggweb.gradegrinder.net/support/manual/fitch
https://ggweb.gradegrinder.net/support/manual/tarski
https://ggweb.gradegrinder.net/support/manual/tarski
http://intrologic.stanford.edu/applications/applications.html
http://intrologic.stanford.edu/applications/applications.html
http://logitext.mit.edu/main

	Introduction
	Background
	Propositional logic
	Analytic tableau in propositional logic and related definitions

	First-order logic
	Similar work
	Tableau Editor
	Ruzsa
	Logitext
	Clausal Language
	Other tools for teaching first-order logic

	Technologies
	Elm
	Yarn

	Problem specification
	Design
	Application logic
	Proof structure
	New zipper structure
	Parsing and validating first-order formulas
	Validation
	Gamma rule validation in first-order formulas
	Delta rule validation in first-order formulas
	Substitution
	Undo, Redo

	User interface improvements
	Render the tableau using html div elements
	Add a node anywhere in the tree
	Deleting arbitrary nodes
	Delete the sub-tree of a node
	Swapping beta sub-trees
	Change of formula type

	Implementation
	New proof structure
	Zipper reimplementation

	Unit tests
	Substitution
	User interface
	Validation of Gamma and Delta rules
	Undo, Redo
	Adding and deleting a specific node

	Evaluation
	The goal of testing
	Task assignments
	Questionnaire
	Results of testing
	Summary

	Conclusion
	Appendix A: Source code

